Highly Efficient Activation, Regeneration, and Active Site Identification of Oxide-Based Olefin Metathesis Catalysts

نویسندگان

  • Kunlun Ding
  • Ahmet Gulec
  • Alexis M. Johnson
  • Tasha L. Drake
  • Weiqiang Wu
  • Yuyuan Lin
  • Eric Weitz
  • Laurence D. Marks
  • Peter C. Stair
چکیده

Supported metal oxide based olefin metathesis catalysts are widely used in the chemical industry. In comparison to their organometallic catalyst cousins, the oxide catalysts have much lower activity due to the very small fraction of active sites. We report that a simple pretreatment of MoO3/SiO2 and WO3/SiO2 under an olefincontaining atmosphere at elevated temperatures leads to a 100−1000fold increase in the low-temperature propylene metathesis activity. The performance of these catalysts is comparable with those of the welldefined organometallic catalysts. Unprecedentedly, the catalyst can be easily regenerated by inert gas purging at elevated temperatures. Furthermore, using UV resonance Raman spectroscopy and electron microscopy, we provide strong evidence that the active sites for MoO3/SiO2 are derived from monomeric Mo(O)2 dioxo species.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Olefin Metathesis by Supported Metal Oxide Catalysts

The literature of olefin metathesis by heterogeneous supported catalysts, both industrial-type supported metal oxides (ReOx/Al2O3, ReOx/(SiO2−Al2O3), MoOx/SiO2, MoOx/Al2O3, MoOx/(SiO2−Al2O3), WOx/SiO2, and WOx/ (SiO2−Al2O3)) and supported organometallic complexes, is comprehensively reviewed. The focus of this Review is supported metal oxide catalysts, but the well-defined supported organometal...

متن کامل

Chelated ruthenium catalysts for Z-selective olefin metathesis.

We report the development of ruthenium-based metathesis catalysts with chelating N-heterocyclic carbene (NHC) ligands that catalyze highly Z-selective olefin metathesis. A very simple and convenient procedure for the synthesis of such catalysts has been developed. Intramolecular C-H bond activation of the NHC ligand, promoted by anion ligand substitution, forms the appropriate chelate for stere...

متن کامل

Nature of WOx Sites on SiO2 and Their Molecular Structure− Reactivity/Selectivity Relationships for Propylene Metathesis

Supported WOx/SiO2 catalysts were investigated for propylene metathesis as a function of tungsten oxide loading and temperature. The catalysts were synthesized by incipient-wetness impregnation of an aqueous ammonium metatungstate solution onto the silica support and calcined at elevated temperatures to form the supported tungsten oxide phase. In situ Raman spectroscopy under dehydrated conditi...

متن کامل

Highly active ruthenium metathesis catalysts exhibiting unprecedented activity and Z-selectivity.

A novel chelated ruthenium-based metathesis catalyst bearing an N-2,6-diisopropylphenyl group is reported and displays near-perfect selectivity for the Z-olefin (>95%), as well as unparalleled TONs of up to 7400, in a variety of homodimerization and industrially relevant metathesis reactions. This derivative and other new catalytically active species were synthesized using an improved method em...

متن کامل

Active site nature of magnesium dichloride-supported titanocene catalysts in olefin polymerization

Heterogeneous Ziegler-Natta and homogeneous metallocene catalysts exhibit greatly different active sitenature in olefin polymerization. In our previous study, it was reported that MgCl2-supported titanocenecatalysts can generate both Ziegler-Natta-type and metallocene-type active sites according to the type of activators.The dual active site nature of the supported titanocene catalysts was furt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016